Ultrasonic welding of CF/PPS composites with integrated triangular energy directors: melting, flow and weld strength development

نویسندگان

  • Irene Fernandez Villegas
  • Genevieve Palardy
چکیده

This paper presents a fully experimental study on melting, flow and weld strength development during ultrasonic welding of CF/PPS composites with integrated triangular energy directors. The main goal of this research was assessing whether the heating time to achieve maximum weld strength could be significantly reduced as compared to ultrasonic welding with flat energy directors. The main conclusion is that, in the specific case under study, the triangular energy directors did heat up, melt and collapse approximately two times faster than the time it took for the flat energy directors to melt and significantly flow. However the heating time needed to achieve maximum weld strength for the integrated triangular energy directors did not differ drastically from that for flat energy directors. This was caused by the fact that a fully welded overlap was not directly achieved right after the collapsing of the triangular energy directors. Instead a solidified resin-rich interface was created which needed to be re-melted as a whole in order to achieve a fully welded overlap and hence maximum weld strength.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Process and Performance Evaluation of Ultrasonic, Induction and Resistance Welding of Advanced Thermoplastic Composites

The possibility of assembling through welding is one of the major features of thermoplastic composites and it positively contributes to their cost-effectiveness in manufacturing. This paper presents a comparative evaluation of ultrasonic, induction and resistance welding of individual CF/PPS thermoplastic composite samples that comprises an analysis of the static and dynamic mechanical behaviou...

متن کامل

Experimental Analysis of Effects of Ultrasonic Welding on Weld Strength of Polypropylene Composite Samples

In the present study, method of ultrasonic welding of plastics is used to join the overlap of Polypropylene composites reinforced with glass fiber. The effects of process parameters, including time, pressure, vibration amplitude and amount of glass in composite on strength of welds. To reduce the number of tests and cost, the effect of changing parameters on strength was examined through Box-Be...

متن کامل

An Experimental Study on the Tensile Behaviors of Ultrasonic Welded T-joints for Polyamide Composite

In this paper, an experimental investigation on ultrasonic welding of polyamide composites reinforced with glass fiber has been carried out. The effect of ultrasonic welding parameters, such as welding time, air pressure, hold time and the amount of glass fiber in the composite on tensile strength of weld joints were determined using response surface methodology. This methodology was applied fo...

متن کامل

New-emerging approach for fabrication of near net shape aluminum matrix composites/nanocomposites: Ultrasonic additive manufacturing

Recently, high-performance lightweight materials with outstanding mechanical properties have opened up their way to some sophisticated industrial applications. As one of these systems, aluminum matrix composites/nanocomposites (AMCs) offer an outstanding combination of relative density, hardness, wear resistance, and mechanical strength. Until now, several additive manufacturing methods have be...

متن کامل

On the effect of flat energy directors thickness on heat generation during ultrasonic welding of thermoplastic composites

This paper presents a detailed experimental assessment of the effect of the thickness of flat energy directors (ED) on heat generation at the interface during ultrasonic welding. Power and displacement data showed clear differences caused by the change of thickness, related to heat concentration at the weld line during the process. The extent of the heat-affected zone was assessed by welding sp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017